If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+39^2=89^2
We move all terms to the left:
a^2+39^2-(89^2)=0
We add all the numbers together, and all the variables
a^2-6400=0
a = 1; b = 0; c = -6400;
Δ = b2-4ac
Δ = 02-4·1·(-6400)
Δ = 25600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25600}=160$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-160}{2*1}=\frac{-160}{2} =-80 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+160}{2*1}=\frac{160}{2} =80 $
| C=8(y-6) | | 7a+4aa=8 | | 6+8(x-1)=2(3= | | 8x+5=2x-23 | | a(0.3−1.3)+1.1+2.4(0.4)=0 | | 3=x^2/300 | | 9n+18n=36n | | 5(3•2x)=10x-4 | | 4x+5(38-x)=170 | | 4x+5(38-x)=170 | | 2x-2=189 | | 3/17=3/4w | | –f+–12=–17 | | d2− 1.26=1.14 | | x=54+80+50=180 | | -3/4+1/6=x | | 10(w+3)=7 | | 5x=70−395 | | −4.8x−2.6=3.1x+5.3 | | 49+a=89 | | x•7÷2=X+22 | | 5+x+8=49 | | 5=10(7x-5) | | 5a-11=10 | | 5x-15=5(+) | | 1-2/×=10/3x-1/3 | | 6/1.25=x/3.2;x | | 32x−4=20 | | 2.50/0.5=x/3;x | | 7x-9=10x-19 | | (104x-52)=(91x+273) | | r=452.16(3.14) |